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1. INTRODUCTION

A major component of statistical mechanics, especially its mathematical
aspect, is the study of measures or probability distributions for infinite
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We investigate the properties of non-translation-invariant measures, describing
particle systems on Z, which are asymptotic to different translation invariant
measures on the left and on the right. Often the structure of the transition
region can only be observed from a point of view which is random—in par-
ticular, configuration dependent. Two such measures will be called shift equiv-
alent if they differ only by the choice of such a viewpoint. We introduce certain
quantities, called translation sums, which, under some auxiliary conditions,
characterize the equivalence classes. Our prime example is the asymmetric
simple exclusion process, for which the measures in question describe the
microscopic structure of shocks. In this case we compute explicitly the transla-
tion sums and find that shocks generated in different ways—in particular, via
initial conditions in an infinite system or by boundary conditions in a finite
system—are described by shift equivalent measures. We show also that when the
shock in the infinite system is observed from the location of a second class par-
ticle, treating this particle either as a first class particle or as an empty site leads
to shift equivalent shock measures.

KEY WORDS: Non-translation-invariant measures; shock structure; asymmetric
simple exclusion process; second class particles; shift coupling; orbit coupling.
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particle systems. Such infinite systems represent idealizations of macro-
scopic physical systems whose spatial extension, although finite, is very
large on the microscopic scale of interparticle distances or interactions. The
advantage of this idealization is that many phenomena which are clearly
manifested in real macroscopic systems, such as phase transitions, have
precise counterparts in the behavior of the infinite volume measures. The
inevitable boundary and finite size effects present in real systems, which are
frequently irrelevant to the phenomena of interest, are eliminated in the
thermodynamic (infinite volume) limit.(1)

Our mathematical characterization of these measures for infinite particle
systems is very good for situations in which the measures are translation
invariant (TI).(1, 2) The situation becomes less transparent when dealing
with spatially nonuniform measures. These can arise in various ways.
A rather trivial case occurs when the interaction Hamiltonian or the
dynamics specifying the evolution is position dependent. More interesting
cases arise when the translation symmetry is broken "spontaneously" by
the measure. We first illustrate these by a well known example from equi-
librium statistical mechanics, then discuss a nonequilibrium example which
is the main focus of this paper.

Consider the Gibbs measures for the nearest neighbor ferromagnetic
Ising model on Zd at low temperatures. In d > 3 there exist, in addition
to the TI extremal measures u+ and u_, in which the spontaneous
magnetizations are ±m* with m * / 0 , many non-TI measures called
Dobrushin states; a family of these can be obtained as the infinite volume
limit of systems with ± boundary conditions in the ej-direction.(3) Specifi-
cally, let the domain Q containing the system consist of sites j' = (j\,-, jd)
such that y"i e Z and j 2 , - , ja e[—N, N]d~ \ with all spins outside Q being
equal to + 1 for j \ ̂  0 and — 1 for j1 <0 . In each system configuration w
consider the set of (d – 1 )-dimensional surfaces separating +1 and —
spins, formed of (d – 1 )-dimensional faces of cubes in the dual lattic
Zd + (1/2,..., 1/2). The Dobrushin interface is the maximal connected com-
ponent of this set which contains all such (d – l)-faces outside Q. If d>3
then at low enough temperatures (below the roughening transition) this
interface remains localized near the j1 = 0 plane as A' increases. Conse-
quently, in the resulting infinite volume states u ( ± ) the expectation values
(or correlations) depend on the e1 coordinate, e.g., if oj= ± 1 is the spin at
site j ' e Z d then <0j>u(±) is positive for j1>0 and negative for j 1 < 0 . ( 3 ) This
non-translation-invariant infinite volume Gibbs state is one of an infinite
family obtained via translations in the e1 direction.

If d = 2, the same boundary conditions produce a translation invariant
state in the infinite volume limit. This is because the interface, while
remaining locally sharp, fluctuates in position with the variance of its
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displacement from the plane j1 = 0 growing like N.(4) Consequently, the
limiting measure (defined by the N -+ oo limit of local correlation func-
tions) is a superposition, with equal weights, of the extremal translation
invariant measures u+ and u_.(4, 5) Suppose, however, that we view the
system from some point attached to the Dobrushin interface; for example,
we might choose the point (j*, 0), where j * is as large as possible so that
(j* –1/2, 0) is on the interface. Note that the value of j* and hence the
viewpoint will depend on the configuration under view. It seems clear that
when N-> oo a. limiting measure will exist which will not be translation
invariant, but will instead approach the state u+ (respectively u_) as one
goes to infinity in the positive (respectively negative) e1 direction; this has
not been explicitly established but for results in this direction see ref. 6.
Other viewpoints are of course possible, and the resulting measure will
depend in a complicated way on the choice made. One might choose, for
example, (j* + j 1 , j2) for some fixed (j1, j2) , or (j*, 0) with j*, as small as
possible so that (j* +1/2, 0) is on the interface. One could even add an
additional randomness by choosing either (j*,0) or (j*,0) with equal
probability; this seems artificial in the current context but this sort of addi-
tional randomness is natural and necessary in the one-dimensional system
to be studied shortly.

This example illustrates two ways in which non-TI measures arise. The
non-TI measures for d>3 arise in viewing the system from nonrandom,
fixed, frames. Choice of a different frame simply effects a translation of the
measure. In contrast, the non-TI measures for d = 2 can be seen only if one
views the system from a random position—random in the sense that it
depends on the configuration. Moreover, since the choice of a viewpoint is
rather arbitrary and since the effect on the measure of a change in view-
point is hardly transparent, one must now consider a large family of dis-
tinct measures arising from different viewpoints. Of course, even in d > 3 we
could consider the measure as seen from a point attached to the interface.
At low temperature there seems to be little to be gained from such an
approach, but it might be of interest between the roughening and critical
temperatures in d=3, where the situation is expected to be similar to that
in d = 2.

Several questions arise when the transition region must be described
by non-TI measures obtained from configuration-dependent viewpoints. Is
there a natural choice of viewpoint which will give a best or simplest
description of the local structure of the transition region? How can one
extract intrinsic properties of this region from such a description—proper-
ties independent of the choice of viewpoint? And, given two non-TI
measures, how may one decide if they in fact describe the same system seen
from different points of view? The purpose of the present work is to
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address such questions. Our motivation, and the focus of our study, is in
fact not the above example but a nonequilibrium system, the one dimen-
sional asymmetric simple exclusion process (ASEP). The results are, for the
moment, also specific to one-dimensional systems.

We now describe the non-TI measures arising in the ASEP. The lat-
ter(7, 8) is a model of particles moving on the lattice Z; a configuration tj of
the system has the form // = (v('))/ez. where tj(i) is 0 or 1 at an empty or
occupied site, respectively. Dynamically, each particle attempts to jump to
a neighboring site, at random times with rate 1, choosing its right or left
neighbor with probabilities p and q, respectively, where p>\/2 and
q = 1 — p. The jump takes place if and only if the target site is empty. Thh
extremal stationary TI states of this system are the product (Bernoulli)
measures vp with constant density p satisfying 0 ̂ p ^ l.(8) There exist also
non-TI stationary states, which are product measures with nonuniform
density approaching 0 as /-» — oo and 1 as /-* oo. The latter are in fact
special examples of the general class of non-TI measures we will study here:
those which describe the microscopic structure of shocks present in the
macroscopic description of the ASEP.

The ASEP is described on the (Euler) macroscopic space-time scale by
the inviscid Burgers equation for the particle density n(x, t) e [0, 1 ], wher
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Equation (1.1) has shock solutions, n(x, t) = u(x— Vt), where

here p+>p _ and the velocity is V=(p — q){\ — p+ — p-)• A natural ques-
tion then is what behavior of the ASEP system on the microscopic level
corresponds to this shock solution. For example, one may take the initial
state fi0 of the system to be a product measure with density at site j given
by p_ for y<0 and p+ for y^O, and ask about the t -* oo limiting behavior
of the state fi, at time t. It might seem that if one were to view the system
from a frame moving with the shock velocity V then one would see in this
limit a non-TI state describing the intrinsic microscopic structure of the
shock. But this is not true: because fluctuations in the shock position
become unbounded on the microscopic scale as t -> oo, the resulting mea-
sure is an equal superposition of the product measures vp and vp_.(12, 13)

It has been shown,(04, 15) however, that there exists a (nonunique) time-



dependent random position Xt such that the t ~* oo limit of the measure ut

seen from the viewpoint Xt which we shall denote by u', exists and is
spatially asymptotic to the product measures vp and vp_:

Here T is the translation operator, which acts on configurations by (Tn)(i)
= n(i—1), on functions of configurations by (Tf)(n) = f(T~ltj), and on
measures on configuration space by ( f ) T u = (T~{f}M. The situation is
thus analogous to that of the two dimensional Ising model: in the t -* oo
limit here, and in the N -» oo limit there, one must look from a configura-
tion-dependent viewpoint to see the non-TI state.

The random position Xt discussed above is given by the location of a
single second class particle inserted into the system, which is then treated
as an empty site in obtaining the measure u'. This viewpoint is doubly
random, in that the random configuration n does not completely determine
the viewpoint, but only its distribution. The measure u' is invariant unde
the ASEP dynamics for the system seen from the second class particle (we
will describe this dynamics below). In previous works(16, 17) explicit for-
mulas were obtained for a measure u invariant for this same dynamics and
with the same spatial asymptotics (1.3), and it is this measure that will be
our main example here; presumably fi—n\ although this has not been
established. (It is u' which has shown to be obtained by the long time
asymptotics described above.)

In this paper we will focus on questions like those raised above in the
context of the Ising model, which arise from the possibility of different
choices of viewpoint. In Section 2 we describe the evolution of the ASEP
with a second class particle and the resulting viewpoint on the shock, as
well as several other possible choices of viewpoint. In Section 3 we for-
malize, in a general one-dimensional context, the relation of shift equiv-
alence on non-TI measures under which equivalent measures differ by a
random change of viewpoint. There we define also certain quantities, called
translation sums, which characterize this equivalence: two measures (whic
must satisfy certain additional conditions) are shift equivalent if and only
if all the translation sums for the two measures agree. This result will be
established in a separate paper.(18)

In the remainder of the paper we apply these general ideas to the
ASEP. In Section 4 we utilize the results of ref. 17 to compute the transla-
tion sums explicitly. From this computation (and using the verification,
here omitted, that the ASEP shock measures satisfy the additional condi-
tions mentioned above) we establish both negative and positive results
about the ASEP shock. In Section 5 we show that for certain values of the
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In this section we illustrate the nature of shock measures by considering
various viewpoints on the shock for the ASEP, beginning with the view-
point from a second class particle. We first describe briefly the properties
of the ASEP when a single second class particle is introduced into the
system.(12) The second class particle has its own dynamics: it attempts to
jump exactly as does an ordinary (first class) particle, succeeding only if the
target site is empty; on the other hand, when a first class particle attempts
to jump onto the site occupied by the second class particle, the jump suc-
ceeds and the two particles exchange sites. A configuration of this system
is T = (T ( / ) ) , G Z , where r(i) is 0 if site i is unoccupied, 1 if it is occupied by
one of the original particles, now called first class particles, and 2 if it is
occupied by the second class particle. Let us denote the location of the
second class particle by X. If Xt is a measure on this system evolving under
the above dynamics and Xt the corresponding location of the second class
particle at time t, we write T~x<Xt for the measure giving the distributions
of the configuration as seen from this location.

There is an alternate, equivalent way to describe the system with a
second class particle.(12) Consider two copies of the ASEP system having
configurations n0 and n1 which agree except at one site X, at which
no(X) = 0 and r]x{X) = 1, i.e., system 0 has a hole and system 1 a particle.
Allow this pair of systems to evolve under a coupled dynamics, so that
attempts to jump from a given site to an adjacent one occur
simultaneously. Then each time a jump occurs in either system the same
jump occurs in the other, if possible; this synchronization can fail only
when the extra particle in system 1 jumps, or when a particle in system 0
jumps on the extra hole, and in these cases the mismatch position X will
move. From a configuration (>7o> >7i) of this doubled system we may obtain
a configuration x of the single ASEP with second class particle by taking
z(X) = 2 and T(i) = t}0(i) = tjl(i) when i^X; the dynamics for the doubled
ASEP system corresponds to that described above of the system with a
second class particle. Conversely, from a configuration T we may obtain
two distinct ASEP configurations tj0 and rx by restricting attention to one
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parameters the shock measure is not shift equivalent to any product
measure with a monotone density; we show also that when the shock is
observed from the location of a second class particle, treating this particle
either as a first class particle or as an empty site leads to shift equivalent
shock measures. Finally, in Section 6 we show that certain shocks arising
in versions of the ASEP with different boundary conditions are in fact shift
equivalent.

2. POINTS OF VIEW FOR THE ASEP SHOCK



Thus u furnishes an invariant description of the shock itself, ignoring its
location. It follows from (2.1) that u has the spatial asymptotics (1.3).

Other points of view are possible. Thus one may obtain new descrip-
tions of the shock by rather trivial shifts of viewpoint; for example,
a constant one, to the second site to the right of the second class particle,
a configuration-dependent shift, to the third empty site to its right, or a
shift with additional randomness, such as a choice, with equal weights,
between the two previous possibilities.

An alternate measure for the shock is implicit in the description of the
system with second class particle as a coupled pair of ASEP systems: the
measure p, = *Fi(Xt), obtained from X, by replacing the second class particle
by a first class particle, evolves with the ASEP dynamics, and is invariant
in the sense of (2.2): T~x>fi, = fi0. We write fi = flo= VX{X); p is obtained
from u simply by replacing the empty site at the origin by a particle.
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or the other of the paired ASEP systems or equivalently by replacing the
second class particle by respectively a hole or a first class particle; we will
write rjQ= *P0{T) and >/, = ^ ( r ) . Similarly, from a measure X for the ASEP
with second class particle we obtain ASEP measures ¥0(X) and Y\W
giving the distribution of t}0 and t]x under X. Clearly if X, is evolving under
the second class particle dynamics then both *P0(Xt) and V^X,) evolve
under the simple ASEP dynamics.

A measure X describing this system from the viewpoint of the second
class particle was constructed explicitly in ref. 17; the construction is sum-
marized in Section 4. This measure has spatial asymptotics corresponding
to the shock,

and is invariant under the natural dynamics for the system seen from the
second class particle, under which the second class particle is always at the
origin and a jump of this particle in the original dynamics becomes a jump
of the rest of the system in the opposite direction.

To obtain a measure on the original ASEP configurations from the
measure X we may consider either *F0{X) or ¥\{X). To be definite, let us
focus for the moment on the former, which gives the distributions of the
configuration r0, and denote it by u; u is obtained from X by replacing the
second class particle at the origin with a hole. This is the measure referred
to in the introduction. We may allow it to evolve to ut under the ASEP
dynamics, or equivalently write fl, = W0(A,); then viewed from the position
Xt it is time invariant:



Despite the fact that u and u are equally valid as candidates for the
description of the ASEP shock (in the terminology introduced in the next
section, they are both invariant shock measures for the ASEP), it is not at
all clear that they are shift equivalent, that is, differ by the sort of random
change of viewpoint that we have been considering here. In Section 5 we
will use the ideas of the next section to show that this is the case.

Other choices may for some purposes be more tractable. The existence
of a shock measure was first proved by Ferrari, Kipnis, and Saada(l4)

(FKS) using a random viewpoint Zt which Ferrari(15) later showed was
related to Xt by a random translation of finite mean. To construct Z t , con-
sider again two copies of the ASEP system with configurations C0 and £i
satisfying Co(k)^Ci(k) for all k, so that when there is a particle at site k
in configuration C0 there is also a particle at that site in configuration C1.
Allow the system to evolve under the coupled dynamics described above,
so that again sites k at which C0(k) = Ci(k) = 1 and those at which Co(k) = 0
and Ci{k) = 1 obey the dynamics of first and second class particles, respec-
tively. Let A* be a translation- and time-invariant measure for this system
in which the densities are given by <CO(0))A* = / > - and <CI(O))A« = ^ +

(the existence of such a X* is established in ref. 14). Randomly select some
second class particle, i.e., some discrepancy between Co and C1 (more
precisely, condition on the presence of such a particle at the origin at time 0),
and let Zt be its position at time t. At time t = 0, define an ASEP configura-
tion n as follows: first, if (0(k) = (l{k) = 1 then t]{k) = 1, and if (0(k) = Ci(k)
= 0 then r/(k) = 0; second, if (0(k) = Q and C1(^) = 1, and k is the jth site,

jeZ, at which such a discrepancy occurs, counting from i = 0 at Z 0 , then
r]{k) = 1 with probability 1/(1 + (q/p)J), and rj(k) = 0 with the complemen-
tary probability, and all of these choices are independent. Allow the con-
figuration rj to evolve with ASEP dynamics coupled to that of Co and Ci,
so that if a jump occurs in any of the three systems it also occurs in any
others in which it is possible. Then the distribution of n at time t, viewed from
the position Zt is time independent and has the shock asymptotics (1.3).

In all the examples considered so far the position of the viewpoint is
not determined by knowledge of the ASEP configuration n: even given n,
the viewpoint is still random. This is an additional randomness beyond the
configuration dependence discussed for the d = 2 Ising model in the intro-
duction. Our last example is a construction of a viewpoint € on a non-TI
measure n which, as in the d = 2 equilibrium example, is intrinsic. This
means, first, that the viewpoint £{r\) depends only on the configuration n,
with no additional randomness, and second, that the viewpoint behaves
covariantly under translations, so that
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The function l(n) may be thought of as picking out a shock location in the
configuration n. Its intrinsic nature means that if v is any measure obtained
from u by a shift of viewpoint then v and u look the same from the con-
figuration dependent viewpoint l. In the construction of l, u need not be
related to the ASEP dynamics; we require only that n be a non-TI measure
on ASEP configurations which has well-defined and configuration-inde-
pendent asymptotic densities satisfying p+>p_:

for u-almost every n.
To define l(n) we first define a function hn(j) to be the signed

cumulative occupation from the origin to site j :

Fig. 1. Construction of the intrinsic shock location function l(n).
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The graph of hn has, for typical n, slope p + (on a large scale) far to the
right of the origin and p _ far to the left. Now fix an irrational number p^
satisfying p_ <p*<p + , and for any n define £{t]) to be the integer j which
minimizes hn{j)— p^j, whenever such a (necessarily unique) minimizing
integer exists; for other t], £(rj) is undefined. The special role played by the
origin in the definition (2.5) of hn does not affect the value of l(n). The con-
struction is shown graphically in Fig. 1. It is intuitively clear, and can be
proved, that £ is well defined and finite with probability one relative to p.
The definition of l depends strongly on the choice of p*; slight changes in p*

will cause large changes in the viewpoint t{r]) for some configurations n.

Note that the sets Sk = {rj | £(t]) = k) form a partition of the configura-
tion space (up to a set of u-measure zero) which is nicely mapped by trans-
lations: T(Sk) = Sk +1. Such partitions have been constructed for more
general T in the context of discrete time dynamical systems by Gurevic and
Oseledec.(19)

The shock may look quite different from different viewpoints, in par-
ticular, from viewpoints l defined with different values of p*. In Fig. 2 we

Fig. 2. Shock profiles for p = 1, p+ = 0 . 7 , p _ = 0 . 2 , from three different v iewpoints : (i) th
second class part icle ( d i a m o n d s , solid line), (ii) l defined with p* = n~xp ++(\ — n ~ x ) p _
(plusses, da shed l ine) , (iii) t defined with p t = (\ — n ~ ' ) p + +n~*p_ ( squares , do t t ed line).



show shock profiles (mean values <n(k)> at site k relative to the viewpoint
adopted) for the shock in the totally asymmetric (p = 1) model with den-
sities p + = 0.7, p_= 0.2, seen from three different viewpoints: from the
second class particle (that is, in the measure u) and from t1 and t2, the
viewpoints constructed as above with p*i=n~ip++{\—n~l) p_ and
P*2 = (l-n~l)p+ + n-lp–.

It is easy to see directly that this is indeed an equivalence relation; this fact
is also immediately obvious from an alternate formulation (3.2) below.
Generalizations to measures on sets other than S on which a translation
operator acts can easily be made. The coupling u* is sometimes referred to
in the mathematical literature as a shift coupling(20, 21) or an orbit coupling.(22)

It is sometimes convenient to work with alternate formulations of this
equivalence relation. One such is obtained by noting that if (3.1) holds then
clearly
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3. EQUIVALENCE OF MEASURES UNDER RANDOM SHIFTS

In the previous section we have described implicitly an equivalence
relation on probability measures on the ASEP configuration space
S = {0, 1} z , under which two such measures u1 and u2 are equivalent if
they differ by a configuration dependent random shift of viewpoint.
Perhaps the simplest way to make this precise is in terms of a coupling for
the two measures, that is, a measure on S × S with marginals u1 and u2 on
the first and second components. We say that u1 and u2 are shift equivalent
if there exists such a coupling u* and an integer-valued function Y such
that for (n1, n2)eSxS, n2 = T-¥i'»-''i)ril with u*-probability one; in this
case we write

Conversely, it can be shown(21, 22) that if (3.2) holds then there exists a
random position Y so that (3.1) is satisfied. For measures describing
shocks, "interesting" TI sets A with nontrivial probability describe intrinsic
properties of the shock; for example, we might take A to be the set of con-
figurations n with a particle at the site three sites ahead of the position S(t))
defined in Section 2, so that u(A) = <n(A>7) + 3)>u.

A second reformulation is obtained from an observation made earlier:
when an intrinsic viewpoint {(n) can be defined, that is, when there exists
a function t{n) defined almost everywhere with respect to both p.x and u2



and satisfying (2.3), then it is easy to see(18) that u1 and u2 are shift equiv-
alent if and only if they look the same from this viewpoint (that is, if and
only if T-'}*! = T~'fi2).

The concept of shift equivalence allows us to give precise definitions of
two natural concepts for shock measures in the ASEP (or similar systems).
We say that a measure u is an invariant shock measure if it has the spatial
asymptotics (1.3) for some p± and if, when ft, is the measure evolving
under the ASEP dynamics which satisfies u0 = u, ut is shift equivalent to u
for all t; for example, the measures u and ft of the previous section are
invariant shock measures in this sense. We say that the ASEP has a unique
invariant shock measure (for given p±) if any two such invariant measures
are shift equivalent. It seems natural to conjecture that the ASEP has a
unique invariant shock measure in this sense for all p± satisfying p+>p_,
but this has not been established.

Let us now restrict attention to measures on S which, like the ASEP
shock measures considered in Section 2, converge under spatial translation
to distinct TI states. Suppose then that u± are translation invariant prob-
ability measures on S with u+ ¥=fi-, and define a ramp measure to be a
probability measure u on S which is asymptotic to u + to the right of the
origin and to u– to the left:
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Associated to each ramp measures is a family of translation sums, to
be defined in the next paragraph. These sums, under rather mild additional
technical conditions on the measures involved,(18) are invariant under a
shift of viewpoint and furnish a complete characterization of shift equiv-
alence. In a sense, the equivalence of (3.1) and (3.2) also provides a set of
invariant quantities which determine the equivalence class of a measure u:
the values u{A) for all TI sets A. The example of the translation invariant
set given above, however, suggests correctly that these quantities are dif-
ficult to calculate. We will see in the next section that the translation sums
are calculable for the ASEP shock measure.

Suppose that u is a ramp measure and that f is a function on S which
depends on only finitely many occupation numbers and which satisfies
fi+(f) =/M_(/) = 0; for example, f(n) = r/(l)-rj(Q) is such a function and,
if the asymptotic states are product measures, i.e., if u± = vp , then so is
f(n) = n{k)(n(\) —1}(0)) whenever k=0, 1. Then we may define the transla-
tion sum



for all f satisfying p + (f) = p _(f) = 0.(18)

As a simple application of this result, consider a product measure v1

on S with density p1(k) = (r](k)}V[ satisfying limk ±oo Pi{k) = p±, with
/?+#/?_; V[ is a ramp measure (asymptotic to vp+ and vp – ) and the addi-
tional technical considerations needed for the above result are satisfied if
the asymptotic limit is achieved sufficiently rapidly. Let v2 be another such
measure obtained by altering the density at the origin only: p2(0) ^/^(O),
p2(k) = Pi(k) if k^O. Then vt and v2 will typically have different transla-
tion sums and hence not be shift equivalent; for example, consideration of
the translations sums for the functions fk(rj) = r}(k)(r](l) — rj(0)), k>l
shows that vl and v2 will not be shift equivalent unless pl(k) + pl( — k) i
independent of k.

4. TRANSLATION SUMS FOR THE ASEP SHOCK MEASURE

In this section we show how to compute the translation sums Afi{f)
for the ASEP shock measure p which, as discussed in Section 2, is obtained
from the invariant shock measure X for the system with second class par-
ticle at the origin by replacing that particle by a hole. In this case the
asymptotic measures pu± are the product measures vp . We will continue to
denote a typical ASEP configuration by n (n(i) = 0 or 1) and a configura-
tion in which second class particles may occur by r (T(I) = 0, 1, or 2); in
this section such a x will always contain a single second class particle
located at the origin.

In ref. 17 (which was an extension to the general ASEP of the results
of ref. 16 for the totally asymmetric model, in which p = 1) it was shown
that the measure X can be written in terms of two vectors |v} and <u>| and
three operators A, D and E satisfying the following algebraic rules:
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AM{f) will be finite for any ramp measure u for which the asymptotic
behavior (3.3) is achieved with sufficient rapidity to guarantee that this
sum converges. For example, if f(>]) = tj(l) -rj(O) then A/I(f) = p+-p_
since (3.4) telescopes, and similarly A/1(f) = (gy/J+-(g)/l_ i f / = 7 g - g
for some g(n). However, we see no easy way to compute Du(f) for general
u and f.

The values of the translation sums characterize the (shift) equivalence
classes of ramp measures in the following sense: under additional condi-
tions describing the convergence at ± oo, two ramp measures u1 and u2 are
shift equivalent if and only if
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Specifically, the probability of the set of configurations specified by the
occupation numbers {(i) (£(/) = 0, 1) of m consecutive sites to the left of the
second class particle (which is located at the origin) and n consecutive sites
to its right,

can be written as the matrix element in which a first class particle is
represented by a matrix D, an empty site by a matrix E, and the second
class particle by a matrix A:

For example, the probability of finding occupation numbers 1 0 1
immediately to the left and 0 1 1 0 0 immediately to the right of the second
class particle, that is, of the local configuration 1 0 1 2 0 1 1 0 0, is given by
(w\DEDAED2E2\v).

It follows from the above that the microscopic shock profile, defined
as the average occupation <T(H)>^ = {t]{n)}ft at site n / 0 , is given for
n>0 by

The exact expression of this profile was given in Eqs. (4.1)—(4.5) of ref. 17,
where it was also shown that the profile has the symmetry property

Let us call a finite product of D's and £'s a word. To every function
of k consecutive site occupation numbers, say/ ( f ( l ) , rj{2),..., n(k)), there is
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naturally associated a linear combination W of words of length k; for
example, if f = j/(l)(l ->/(3)) + 3//(5) rj(6) then

We denote the word of length zero by 1 and associate it with the function
f = 1. For every linear combination W of words we will define below a
number F{W) and will then develop, from the algebraic rules (4.1)-(4.6),
new rules which enable us to calculate F{W). This will determine the
translation sums AA(f) defined in (3.4), since we will show below that
when f and W are related as above and in addition <f>û  =0 , then

A(kf)=nw).
Suppose then that W is a linear combination of words and define

Here

with

and W the operator obtained from W by replacing each D and £ in W by
D and E; r±( W) denotes the number obtained by replacing each D and E
in W by p± and 1 – p± respectively. It is clear from (4.13) and the defini-
tion (4.14) of D and E that the right hand side of (4.13) is a sum of matrix
elements of products of the operators D, E, and A, with each product
containing a single operator A; each such matrix element is computable
from (4.1)-(4.6) and represents a probability calculated in the measure X.
Moreover, the limit in (4.12) exists because X converges exponentially fast
to vp± at + oo.(17) Thus T(W) is well defined.

It follows directly from the definition of F( W) that
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Also, one can easily show that D and E satisfy (4.1), and hence for any W1

and W2,

The five rules (4.15)—(4.19), together with the value of F(D), which we
will derive below, allow one to calculate F( W) for any linear combination
of words W. The argument, based on a recursion on the length of a word
W, is almost identical to that given in refs. 24 and 17 to show that
(4.1)—(4.6) are sufficient to calculate any matrix element of the form (4.8).
Consider, for example, F(DWn), where Wn is a word of length n > 1 with
k factors E:

Here 1.o.t. (lower order terms) denotes linear combinations of f( W) for
words W of length n or less. Since q<p, (4.20) can be solved for F{DWn).
For example, since (4.16) and (4.18) imply that F(D + E)= 1,

and hence
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If W is a word of length k which contains j factors E and if for
i= 1,..., j , W1') is the operator product obtained from W by replacing the
ith factor E by A, then from (4.4), (4.5), (4.13), and (4.14),

More generally, if/(>/(l), t](2),..., rj(k)) is a function of the occupation num
bers of sites 1,..., k and W the corresponding linear combination of words
of length k (see (4.11)), then (4.23) implies that

Note that, as is clear in (4.23), the averages are taken in the measure ft
obtained from X by replacing the second class particle at the origin by a
hole, that is, taking n(0) = 0. For example, if f = rj( 1)(1 - 77(3)) + 3rj(5) t](
then from (4.11) and (4.24),

Equations (4.24) and (4.10) imply that

Moreover, (4.24) leads immediately to the calculation of translation sums
Afkf), for if f is a function satisfying <f>u± = 0 and W is the corre-
sponding linear combination of words, then (4.12), (4.24), and the relations
</>v, =r±{W) imply that

The translation sums are in some cases related to expectation values
in the measure ft in a surprisingly simple way. For example, let f1(n) be a
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function of n( — m),..., rj( — 1) and f2(rj) a function of 7/(2),..., 77(77), and le
h{t)) = ri(l)-ri(0). Then u±(f1,hf2) = 0, so that ^ ( / , / i / 2 ) is defined. We
will show that

The operator corresponding to h is A' = (D + E) D — D(D + E) =
ED-DE; in view of (4.8) and (4.27), (4.28) will follow if we show that for
any W1 W2,

To verify (4.29) we show that, up to a normalization, r{WiA'W2) is
determined by the same algebraic rules (4.1)-(4.6) which determined
<M'| WXAW2 |y>. First, D and E of course satisfy (4.1), and this in turn
implies that A' satisfies the analogue of (4.2) and (4.3):

Moreover, since r + {WxA'W2) = r _(WlA'W2) = 0 for any W1, W2, (4.16)
and (4.17) give

which is the analogue of (4.4)–(4.5). Finally, the analogue of (4.6) is

Since the rules (4.1)–(4.6) determine all matrix elements <w| WXAW2 |t>,
(4.1) and (4.30)-(4.33) imply that these will agree with the r(WxA'W2) up
to a normalization determined by comparing (4.6) and (4.33), that is,
(4.29) holds.

5. CONSEQUENCES OF THE CALCULATION OF THE
TRANSLATION SUMS

In this section we apply the calculation of the translation sums Afl(f)
outlined in Section 4 to discuss the shift equivalence of various measures
describing the ASEP shock and to identify certain intrinsic features of the
ASEP shock.
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In Section 2 we observed that the measure fi, obtained from 1 by
replacing the second class particle at the origin by a first class particle (or
equivalently from u by replacing the hole at the origin by a particle), stood
on an equal footing with u in providing a description of the shock. We now
show that

for any f satisfying <f>/J± =0, so that by the general results referred to in
Section 3, u and u differ only by a shift of viewpoint (which in general will
be a random shift with distribution depending on the configuration).

For suppose that, instead of using (4.14), we had defined E and E by
D = D + 8A and E = E, arriving at new quantities t( W). Then all the con-
siderations of Section 4 would have been essentially unchanged, except that
averages in (4.24) would be computed in the measure fi; as a result, (4.26)
would become /*\£>)= 1. This would lead to

this equation may be verified by noting that 7\(W) = T(W)-r(W) and
r2(lV) = r+(W)-r_(W) both satisfy (4.15), (4.18), (4.19), and the
homogeneous versions of (4.16) and (4.17), and that (5.2) holds for W=D,
so that the reduction procedure (4.20) yields (5.2) for all W. As a conse-
quence, from (4.27) and the corresponding equation Afi(f) = P{ W), the
translation sums satisfy (5.1).

We next turn to the calculation of the translation sums associated with
the particular family of functions /„(?/) = (//(0) — p _ )(t](n) — p +) , n ̂  1. t
us write

Since fn(r,)-fn+l(ri) = (r}(n+l)-r,(n))(p_-r,(O)) = (T"F)(ti), where F{rj
= (f/(l)-»/(0))(/»_-i?(-n)), (4.28) implies that
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where we have used the symmetry (4.10) of the profile. Thus

But P1 can be evaluated from (4.15)-(4.18), (4.22), and (4.26):

The right hand side of (5.5) in the case «= 1 can be evaluated from for-
mulas (4.1)-(4.5) of ref. 17 and shown also to be given by (5.6); thus
lim/t̂ oo ^£ = 0 (as one would expect) and hence

To understand the consequences of Eq. (5.7) we recall(17) that in
general the profile (,rj(n)}ft decays exponentially to its asymptotic value:
for n» 1,

where C>0 if q/p<x*, C = 0 (and in fact (rj(n))ft = p + for all «>0) if
q/p =x*, and C < 0 if q/p>x*, with x* = p_{\ — p + )/p + (\ — p_) (explicit
values of a and y are given in ref. 17). Thus (5.7) implies that, except on the
line q/p = x*, Pn decreases exponentially to 0 as n -» oo, with characteristic
length a"1. Since the Pn are intrinsic properties, this gives an intrinsic
characteristic size for the shock.

A somewhat surprising aspect of the shock profile, found in ref. 16
for p = \ and in ref. 17 for all p satisfying q/p<x*, is the "overshoot:"
<\tl(n)}fl>P+ for n^l (corresponding to C>0 in (5.8)). A natural ques-
tion is whether this overshoot is a by-product of the choice to view the
shock from the second class particle, and might be eliminated by the adop-
tion of another viewpoint. While we cannot answer this question, (5.7)
implies that for q/p<x* there is no viewpoint from which the shock
measure is described by a product measure with density increasing
monotonically from p_ to p + , since such a measure would lead to a
negative Pn. Similarly, for q/p=£x* there is no point of view from which
the shock measure would be a product measure with density p+ to the
right of the origin and density p _ to the left of the origin, since for such
a measure, all the Pn would vanish.
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6. SHOCKS IN OTHER ASEP MODELS

Several different models, with ASEP dynamics but with specific initial
conditions, boundary conditions or minor modifications, have been shown
to give rise to shocks:

1. An infinite system with, as initial condition, a product measure
with density p + to the right and p _ to the left of the origin. This is the case
discussed in the introduction and in refs. 14, 15, and 17.

2. A system with ring geometry and a blockage bond, at which the
jump rate is less than that at other bonds in the system.(25)

3. A system with ring geometry and a slow second class par-
ticle(26, 27)

4. A system with open boundary conditions on its first order trans-
ition line, discussed below and in ref. 28.

Note that in example 2 and 3 the shock in the ring geometry is caused by
the blocking bond or particle but is located far from it, in a region where
the usual ASEP dynamics holds. On this basis it is reasonable to believe
that, when the size of the system goes to infinity, all of these different
models lead in fact to shocks which are shift equivalent, i.e., that one may
choose for each shock a viewpoint such that, seen from this viewpoint, all
the shocks are described by the same ramp measure. (The relation of
shocks observed in similar but more complicated systems(29) to those of the
ASEP remains to be investigated.) This equivalence is not obvious a priori
but could be verified, at least in cases where exact expressions permit exact
computations, by showing that all the translation sums A(f) are identical
to those found in Section 4 and that the technical conditions mentioned in
Section 3 are satisfied.

We illustrate part of this program on a heuristic basis by computing
the translation sums for the ASEP with open boundary conditions, in the
totally asymmetric (p = 1) case. This is a system with N sites, in which par-
ticles enter the system at site 1 with rate a and escape at site N with rate B.
In ref. 28, it was shown that the steady state of this system can be fully
described by an algebra rather similar to the one discussed in Section 4
(the weight of a configuration can be written as the matrix element of a
matrix product where a matrix D is used when a site is occupied and a
matrix E when the site is empty). Using this algebra, in principle, any
expectation can be calculated for systems of any size and for any values of
the parameters a and B. In particular, it was shown that if a < min{/?, 1/2}
the system is in a low density phase, described in the bulk by a product
measure with density a, while B<min{a, 1/2} the system is in a similar
high density phase, with bulk density 1 - B.
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On the line a = B< 1/2 there is a first order phase transition between
these two phases. When the system is on this phase coexistence line one can
show(28) that for large N and for i far from the boundaries ( i » 1 and
N –i» 1) the profile is linear in i/N,

and by a similar computation, not given in ref. 28, that nearest neighbor
two point correlations behave in the same way:

The interpretation of this behavior is that there is a shock in the system,
separating a region of low density a to its left and of high density 1 — a to
its right, and that the linear dependence on i/N arises because the shock is
equally likely to be anywhere in the system (apart from some corrections
of order 1/N due to boundaries). It seems natural to suppose as well that
the structure of the shock is independent of its location, so that if we deter-
mine the shock position in the configuration n by some function l(n) as
described in Section 2, and write um for the system measure conditioned
on t(r\]=m, then the measures um are just translates of one another,
/um = Tm~m'fim., for N large and m far from the boundaries.

If such an interpretation is correct, then the expectation of any func-
tion of the occupation numbers near site i should for large N show linear
behavior in i/N similar to that of (6.1) and (6.2). The leading terms give no
information about the shock structure, but it follows also from the picture
described above that there is a probability of order \/N that the shock is
located near site i, so that to describe the shock properties one must com-
pute the terms of order \/N in expressions like (6.1) and (6.2). However,
these order 1/N terms may contain not only contributions coming from the
events where the shock is in the neighborhood of i, but also contributions
from boundary effects, in particular from the precise definition of the coor-
dinate i.

We now show that we may calculate these order 1/N terms and thus
obtain additional support for this picture. If f = f(r/(i+ 1), r)(i + 2),...,
rj{i-\-k)) is a function depending on the occupation numbers of sites
between i+ 1 and i + k, with k«N, then it can be shown (see below) that
for i far enough from the boundaries the expectation of f takes the form
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Here b is a constant of order 1, independent of f and i, and W is the linear
combination of words of length k associated to f, as in Section 4 (see
(4.11)). Equation (6.3) defines y{W); the correct choice of b, which may be
regarded as representing the boundary effects, guarantees that y(W) is
independent of i. Equation (6.3) is trivial for f= 1 (corresponding to k = 0)
and leads to

For f = t](i), (6.3) is a direct consequence of the asymptotics which can be
calculated without difficulty from the exact expressions derived in ref. 28;
this calculation leads to explicit values for b and of y(D), but the values of
these parameters are not needed for the calculation of the translation sums.
For other words W one can use the algebra of ref. 28 (we omit details) to
verify (6.3) by induction on the length of W, and also show that the y( W)
have the following properties:

Here r + and r_ are defined with the densities p + = 1 — a and p_ = a. Thus
the y{ W) satisfy the same rules as F( W) of Section 4, and one can con-
clude (see the argument following (5.2)) that the general expression of these
y( W) is given by

Now suppose that the function f satisfies <f>*„ = (/>v,_. = 0> so that
(6.3) becomes

This result has a simple interpretation in terms of the heuristic picture,
described above, that the steady state of the open system contains a shock
equally likely to be located at any site and with structure independent of
its location. Thus in computing <f> we are averaging the expected value
in the measure conditioned on the shock position being m, (f}Mm, over all
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N possible shock positions. Since the measures um differ only by translation
this is, up to a factor \/N, just the calculation of the translation sum JM (f)
for any fixed m (N must be large enough so that um is effectively an infinite
volume measure). Thus (6.10) implies that A^ (f) = y{ W). But (6.9) implies
that for such a function f, y{W) = r(W), so that from (4.27), ^ m ( f ) =
Aft(f): the translation sums for the shock in the open system are the same
as those calculated in Section 4. Thus these two shocks are shift equivalent.
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